Scanning cytometry with a LEAP: laser-enabled analysis and processing of live cells in situ.
نویسندگان
چکیده
BACKGROUND Scanning cytometry now has many of the features (and power) of multiparameter flow cytometry while keeping its own advantages as an imaging technology. Modern instruments combine capabilities of scanning cytometry with the ability to manipulate cells. A new technology, called LEAP (laser-enabled analysis and processing), offers a unique combination of capabilities in cell purification and selective macromolecule delivery (optoinjection). METHODS LEAP-mediated cell purification and optoinjection effects were assessed in model experiments using adherent and suspension cell types and cell mixtures plated and processed at different densities. Optoinjection effects were visualized by delivering fluorescent dextrans into cells. Results were analyzed using the LEAP instrument's own imaging system as well as by fluorescence and confocal microscopy. RESULTS Live cell samples (adherent and suspension) could be purified to 90-100% purity with 50-90% yield, causing minimal cell damage depending on the cell type and plating density. Nearly one hundred percent of the targeted cells of all cell types examined could be successfully optoinjected with dextrans of 3-70 kDa, causing no visual damage to the cells. Indirect optoinjection effects were observed on untargeted cells within 5-60 microm to targeted areas under conditions used here. CONCLUSIONS LEAP provides solutions in cell purification and targeted macromolecule delivery for traditional and challenging applications where other methods fall short.
منابع مشابه
Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells.
We report on the development of a nanowire substrate-enabled laser scanning imaging cytometry for rare cell analysis in order to achieve quantitative, automated, and functional evaluation of circulating tumor cells. Immuno-functionalized nanowire arrays have been demonstrated as a superior material to capture rare cells from heterogeneous cell populations. The laser scanning cytometry method en...
متن کاملExtended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy
BACKGROUND Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CC...
متن کاملEvaluation of the effect of low-level laser irradiation on viability and ROS production in human hair follicle stem cells
Background: Low-level lasers are used for various medical applications including wound healing and hair loss treatment. Cell Therapy using skin stem cells could be a novel approach to hair transplantation. However, there is no study on the effect of low-level laser on the hair follicle stem cells. So, in this study, we investigated the effect of low level laser irradiation on viability and ROS ...
متن کاملI-1: Screening of Subfertile Men for Testicularlar Carcinoma In Situ by An Automated Image Analysis-Based Cytological Test of The Ejaculate
Background: Testicular cancer (TC) is usually diagnosed after manifestation of an overt tumour. Tumour formation is preceded by a pre-invasive and asymptomatic stage, carcinoma in situ (CIS) testis, except for very rare subtypes. The CIS cells are located within seminiferous tubules but can be exfoliated and detected in ejaculates with specific CIS markers. Materials and Methods: We have built ...
متن کاملNeuroblastic and Schwannian stromal cells of neuroblastoma are derived from a tumoral progenitor cell.
The coexistence of neuroblastic and Schwannian stromal (SS) cells in differentiating neuroblastoma (NB), and derivation of Schwannian-like cells from neuroblastic clones in vitro, were accepted previously as evidence of a common pluripotent tumor stem line. This paradigm was challenged when SS cells were suggested to be reactive in nature. The advent of microdissection techniques, PCR-based all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cytometry. Part A : the journal of the International Society for Analytical Cytology
دوره 69 7 شماره
صفحات -
تاریخ انتشار 2006